翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

strong interaction : ウィキペディア英語版
strong interaction

In particle physics, the strong interaction is the mechanism responsible for the strong nuclear force (also called the strong force, nuclear strong force or color force), one of the four fundamental interactions of nature, the others being electromagnetism, the weak interaction and gravitation. Effective only at a distance of a femtometer, it is approximately 100 times stronger than electromagnetism, a million times stronger than the weak force interaction and 1038 times stronger than gravitation at that range.〔Relative strength of interaction varies with distance. See for instance Matt Strassler's essay, ("The strength of the known forces" ).〕 It ensures the stability of ordinary matter, as it confines the quark elementary particles into hadron particles, such as the proton and neutron, the largest components of the mass of ordinary matter. Furthermore, most of the mass-energy of a common proton or neutron is in the form of the strong force field energy; the individual quarks provide only about 1% of the mass-energy of a proton.
The strong interaction is observable in two areas: on a larger scale (about 1 to 3 femtometers (fm)), it is the force that binds protons and neutrons (nucleons) together to form the nucleus of an atom. On the smaller scale (less than about 0.8 fm, the radius of a nucleon), it is the force (carried by gluons) that holds quarks together to form protons, neutrons, and other hadron particles. The strong force inherently has so high a strength that the energy of an object bound by the strong force (a hadron) is high enough to produce new massive particles. Thus, if hadrons are struck by high-energy particles, they give rise to new hadrons instead of emitting freely moving radiation (gluons). This property of the strong force is called color confinement, and it prevents the free "emission" of the strong force: instead, in practice, jets of massive particles are observed.
In the context of binding protons and neutrons together to form atomic nuclei, the strong interaction is called the nuclear force (or ''residual strong force''). In this case, it is the residuum of the strong interaction between the quarks that make up the protons and neutrons. As such, the residual strong interaction obeys a quite different distance-dependent behavior between nucleons, from when it is acting to bind quarks within nucleons. The binding energy that is partly released on the breakup of a nucleus is related to the residual strong force and is harnessed in nuclear power and fission-type nuclear weapons.〔on Binding energy: see (Binding Energy, Mass Defect ), Furry Elephant physics educational site, retr 2012 7 1〕〔on Binding energy: see (Chapter 4 NUCLEAR PROCESSES, THE STRONG FORCE ), M. Ragheb 1/27/2012, University of Illinois〕
The strong interaction is thought to be mediated by massless particles called gluons, that are exchanged between quarks, antiquarks, and other gluons. Gluons, in turn, are thought to interact with quarks and gluons as all carry a type of charge called color charge. Color charge is analogous to electromagnetic charge, but it comes in three types rather than one (+/- red, +/- green, +/- blue) that results in a different type of force, with different rules of behavior. These rules are detailed in the theory of quantum chromodynamics (QCD), which is the theory of quark-gluon interactions.
Just after the Big Bang, and during the electroweak epoch, the electroweak force separated from the strong force. Although it is expected that a Grand Unified Theory exists to describe this, no such theory has been successfully formulated, and the unification remains an unsolved problem in physics.
==History==
Before the 1970s, physicists were uncertain about the binding mechanism of the atomic nucleus. It was known that the nucleus was composed of protons and neutrons and that protons possessed positive electric charge, while neutrons were electrically neutral. However, these facts seemed to contradict one another. By physical understanding at that time, positive charges would repel one another and the nucleus should therefore fly apart. However, this was never observed. New physics was needed to explain this phenomenon.
A stronger attractive force was postulated to explain how the atomic nucleus was bound together despite the protons' mutual electromagnetic repulsion. This hypothesized force was called the ''strong force'', which was believed to be a fundamental force that acted on the protons and neutrons that make up the nucleus.
It was later discovered that protons and neutrons were not fundamental particles, but were made up of constituent particles called quarks. The strong attraction between nucleons was the side-effect of a more fundamental force that bound the quarks together in the protons and neutrons. The theory of quantum chromodynamics explains that quarks carry what is called a color charge, although it has no relation to visible color. Quarks with unlike color charge attract one another as a result of the strong interaction, which is mediated by particles called gluons.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「strong interaction」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.